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We present the results of a numerical and experimental study of the five-cell flow in 
the Taylor vortex problem. There is evidence for a new five-cell solution which is 
different in nature to the previously recorded solution. We find that there is an 
exchange in stability between the two solutions which we explain in terms of 
bifurcation theory. Streamline plots of the numerical results are compared with 
photographs of the observed flow. The agreement between the calculations and 
experiments is good. We use the Schaeffer homotopy to study the new solution in the 
periodic model. The results show that the new solution is not connected in any 
continuous manner to  the trivial Couette flow solution. 

1. Introduction 
In  recent years, several studies have reported evidence of novel cellular states in 

the Taylor vortex problem. In these flows the direction of spiralling of a t  least one 
of the end cells leads to outward motion along the fixed endwall. Examples of such 
states were first observed by Benjamin in 1978. Since then, there has been significant 
theoretical, numerical and experimental work by, amongst others, Benjamin & 
Mullin (1981), Cliffe & Mullin (1985) and Bolstad & Keller (1987). 

In  these experiments the inner cylinder rotates whilst the outer cylinder and both 
ends are held fixed. Intuition suggests that the flow produced in this way should be 
directed inward a t  the ends. Similarly, one might suppose that the number of cells 
should be even, owing to the imposed symmetry of the boundary conditions. Indeed 
such flows are well known in the Taylor problem and are termed normal modes. The 
primary flow is defined to be that developed by a gradual increase in the Reynolds 
number from small values and always consists of one of these normal modes. 

However, the modes which interest us in the present study do not fall int'o this 
category. They form a class of flows which had apparently gone unnoticed in over 
fifty years of research into the problem until Benjamin's observations in 1978. 
Therefore, he called them anomalous modes. Such modes can be considered to 
originate from the periodic model and the labelling of the cellular states is chosen to 
be consistent with this observation. Further support for this reasoning is given by the 
major cellular motion observed experimentally, which gives outward flow along one 
or both ends, notwithstanding the small weak circulation in the corners. 

It is well known that all secondary modes, with one exception, are disconnected 
from the primary flow, and cannot survive below a critical value of the Reynolds 
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number. In the periodic model, however, mathematical analysis and numerical 
results have shown that these modes all bifurcate from the trivial solution. In  1981, 
Benjamin & Mullin suggested a bifurcation diagram representing a mechanism for 
producing disconnected modes, starting from the periodic model. The construction of 
the diagram is based on the work of Benjamin (1978a,b) and Schaeffer (1980). 
Schaeffer introduced a homotopy between the abstract model, with periodic 
boundary conditions, and the realistic model, with no-slip conditions, with the 
homotopy parameter 7 taking the value 0 in the former and 1 in the latter, 

The simplest example of an anomalous mode has one cell. I n  the state diagram a t  
7 = 0 this case is represented by a symmetric bifurcation from the trivial solution. 
Such a bifurcation necessarily breaks the midplane symmetry of the primary flow. 
Benjamin & Mullin (1981) speculated that the bifurcation persists to 7 = 1 for a 
sufficiently small value of the aspect ratio, r. As r is increased the single-cell modes 
then become disconnected. 

Benjamin & Mullin (1981) also presented experimental evidence to support these 
conjectures, which are given further credence by the numerical results of Cliffe (1983) 
and the experimental work of Pfister et al. (1988). It is also suggested that, in the case 
of odd-cell flows with N 3 3 the sequence of qualitative changes is the same as for 
single-cell flows, but that the disconnection process takes place a t  values of 7 less 
than 1 .  

Indeed, Cliffe & Muilin (1985) produced numerical and experimental evidence to 
support these speculations. I n  an independent investigation, Bolstad & Keller (1987) 
used the same model to account for the disconnected five-cell modes and computed 
the five-cell solution by a numerical implementation of the Schaeffer homotopy . The 
results again confirmed the theory of Benjamin & Mullin (1981). 

Comparisons of numerical and experimental results based on the use of Schaeffer’s 
homotopy , reported in the above studies, give convincing qualitative and 
quantitative agreement. We consider that  the use of the homotopy is justified and 
use the same approach in the present study. 

Bolstad & Keller (1987) computed the lower stability boundary for the five-cell 
mode by numerical methods. The diagram of their results has a cusp in the lower left 
part of the curve a t  7 = 1. Cliffe & Mullin (1985) have also noticed the existence of 
such a feature, which has certain implications in bifurcation theory. 

In the present study, we again compute the five-cell solution stability curve and 
make comparisons with new experimental observations. We find numerical and 
experimental evidence for a new five-cell flow which exchanges stability with the 
previously recorded five-cell flow a t  a critical value of r. We shall refer to the 
previously recorded five-cell flow as the ‘old’ five-cell solution. We find that the 
mechanism for the stability exchange involves a transcritical bifurcation and a 
hysteresis point. However, this feature alone does not account for the changes in 
stability of the solutions. We must also take into account a path of Hopf points 
bifurcating to unstable time-periodic flow. 

A further interesting feature is that  the new flow is found to exist as a disconnected 
mode in the periodic model. That is to say, that while the old five-cell flow arises a t  
a symmetry-breaking bifurcation from the trivial Couette flow solution, the new flow 
simply appears from a limit point a t  a critical value of the Reynolds number. 

The experimental procedure used in this study is the same as that described in $4 
of Cliffe & Mullin (1985) : we do not repeat the description here. 

In  $2 we describe the numerical methods and bifurcation techniques, in $3  we 
present the results and finally in $ 4  we draw some conclusions. 
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2. Numerical methods 
We now proceed to outline the numerical methods used in the present study and 

also consider several theoretical points which are important in the interpretation of 
the numerical results. Let us first recall the methods of Cliffe & Mullin (1985) for 
approximating the steady-state Navier-Stokes equations. 

Keller arclength continuation methods are applied to a finite set of equations of 
the form 

obtained from a finite-element discretization of the Navier-Stokes equations over 
the rectangular cross-section of an annular fluid-filled region. This region, of width 
d and length 1, is bounded by an inner cylinder of radius r1 rotating with angular 
speed 52 and a stationary outer cylinder of radius r2.  

In  these equations x is the solution vector, consisting of all the velocity and 
pressure degrees of freedom and X i s  the high-dimensional space representing all the 
degrees of freedom allowed for x. We define the Reynolds number to be R = 52rl d/v, 
where v is the kinematic viscosity, the aspect ratio to be r = l / d  and the radius ratio 
to be 7 = r2 / r1 .  In  the present study 7 is fixed at a value of 0.6. 

f l x , R , r , q , r )  = 0 ,  f : X x R * + X ,  (2.1) 

We apply the equations (2.1) over the region 

D = ((r,z):rl < r < r2,  -a1 < z < tZ}. (2.2) 

Boundary conditions applied in the derivation of (2.1) require that u, and u, vanish 
on both cylindrical surfaces and that u+ = 0 on the outer cylinder and uQ = 1 on the 
inner cylinder. We use the boundary conditions proposed by Schaeffer (1980) on the 
ends of the annulus, 

I u, = 0, 

I au 
( l - r ) L + r u 7 U ,  = 0, aZ - 

for z = &$l and rl < r < r2.  Here F(r)  is a smooth function satisfying F(r,) = 1 and 
F ( r )  = 0 for r b rl+e, with 0 < e << r 2 - r l  (Benjamin & Mullin 1981, p. 232). 

We turn briefly to a discussion of the bifurcation theory employed in the present 
study. We are concerned with the bifurcations to four- and five-cell flow, from the 
trivial solution in the periodic model. The bifurcation to five-cell flow, labelled PI in 
figure 1 (a )  and figure 2 (a )  breaks the midplane symmetry of the solution and is 
known as a symmetry- breaking bifurcation. The bifurcation to four-cell flow, 
labelled P,, in figure 1 (a )  and figure 2 (a )  does not break the midplane symmetry, 
although the bifurcating branches do lie in a different subspace to the trivial solution. 
It is therefore known as a subspace-breaking bifurcation. The main difference 
between the two bifurcations in the present context is that, when r is increased from 
zero, the symmetry- breaking bifurcation persists, whilst the subspace-breaking 
bifurcation decouples to give a limit point. As we see in figures 1 and 2, there are two 
secondary bifurcations, S, and S,, which lie either on the five-cell mode where they 
are subspace-breaking or on the four-cell mode where they are symmetry-breaking. 
The ordering of the bifurcations depends on r and changes at the multiple 
bifurcation point, r,. 

We now consider the implications of applying the homotopy to transform from the 
periodic model to the realistic model. As we increase r from zero, the bifurcation to 
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(4 (4 
FIGURE 1. State diagrams representing the decoupling of the five-cell anomalous modes, as 7 is 
increased from 0 (a )  to 1 (d ) ,  for r> r, (r, is the value of r a t  which the four- and five-cell 
bifurcations change priority a t  7 = 0). 
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FIGURE 2. State diagrams representing the decoupling of the five-cell anomalous modes, as 7 is 
increased from 0 (a )  to  1 ( b ) ,  for r < r,. 

five-cell flow persists, since i t  is symmetry breaking. It does not, however, persist to 
7 = 1, and as a result the five-cell modes are disconnected at -r = 1. The disconnected 
modes are generated in one of two ways depending on whether r > r, or r c r,, 
as we see in the schematic representation of figure 1 and figure 2. 

In the present study we fixed T a t  4.7, a value greater than r,, and the bifurcation 
process is represented by figure 1 (a-d). We compute the path of symmetry-breaking 
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bifurcations using an extended system of equations formulated by Werner & Spence 
(1984). As 7 is increased, the supercritical bifurcation, PI, first becomes subcritical 
then coalesces with the supercritical bifurcation, S,, to produce the disconnected five- 
cell modes. These two events occur at points of higher-order singularity on the 
solution surface and are known as quartic points and coalescence points respectively 
(Cliffe & Spence 1984). They may be considered to be singularities on the path of 
symmetry-breaking bifurcations. 

Before we can compute the path of symmetry-breaking bifurcations we require an 
approximation of the solution near PI. We obtain this approximation by applying a 
continuation procedure along the trivial solution a t  7 = 0. The singular point is 
detected by a change in sign of the determinant of the Jacobian matrix. We locate 
the singular point exactly by use of the extended system and compute the path of 
symmetry-breaking bifurcations as 7 is increased from zero. We proceed until both 
a quartic point and a coalescence point have been detected, using a method given in 
Cliffe & Spence (1984). 

We now fix 7 at a value greater than that of the quartic point and continue along 
a branch of the subcritical bifurcation. The techniques used for switching branches 
a t  a bifurcation point can be found in Keller (1977). We proceed until a limit point 
is detected, again by monitoring the sign of the determinant of the Jacobian matrix. 
A limit point may be characterized as an isolated solution of an extended system of 
equations formulated by Moore & Spence (1980). We compute the locus of limit 
points by increasing T to  1, noting that as T is increased the five-cell modes become 
disconnected at the coalescence point. 

The path of limit points, a t  7 = 1,  represents the lower stability boundary of the 
five-cell flow in the experiments. We compute the path of these points in the same 
way as before, using r as the continuation parameter, with 7 fixed a t  1.  (This is the 
value of 7 used for all comparisons between calculation and experiment.) 

On paths of limit points we may detect two types of higher-order singularity, 
namely a hysteresis point and a transcritical bifurcation point. Such points are 
located by use of extended systems formulated by Jepson & Spence (1985). We may 
also check for bifurhation to time-dependent flow. Under certain conditions a path 
of Hopf bifurcation points can arise from the fold curve. The start of this path 
coincides with a singularity on the fold curve which can be detected by monitoring 
the defining conditions. Extended systems for this singularity, known as the 
Takens-Bogdanov point (Guckenheimer & Holmes 1986), and for Hopf bifurcation 
points have been devised by Jepson, Spence & Cliffe (1988) and Griewank & Reddien 
(1983), respectively. 

Recall from the introduction that we have found evidence for a new five-cell 
solution. This solution is located numerically by applying continuation in both r a n d  
R. We have been able to compute the path of limit points of the new solution, a t  
7 = 1,  as well as tracing the solution back to  7 = 0, by following the path of limit 
points. The aim of the second computation is to investigate the new solution in 
relation to the existing bifurcation model for the periodic approximation. 

3. Results 
Figure 3 represents a comparison between the numerically calculated curves and 

the new experimental results, for a radius ratio of 0.6. The experimental results 
correspond to parameter values (r,R) at which a stable, steady five-cell solution loses 
stability. The numerically calculated curve 5 ,  represents the path of limit points of 
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Aspect ratio, r 
FIGURE 3. Critical loci for the five-cell anomalous modes with radius ratio 0.6 ; + , experiment ; 
-, numerically calculated fold curve of 5,, the  old solution, 5,  the new solution ; ---, numerically 
calculated path of Hopf bifurcation points (NB. this connects H, and H, but  lies very close t o  the 
lower limit of stability of the 5 ,  solution over par t  of its length). 

the old five-cell solution while 5 ,  represents the path of limit points of the new five- 
cell solution. The curve joining the Takens-Bogdanov points, H, and H,, is a path 
of Hopf bifurcation points. The point I represents the point a t  which this path is 
tangential to the R-axis. There are singularities on the fold curve a t  T, a transcritical 
bifurcation point, and a t  H, a hysteresis point. 

There are three distinct regions of the (r, R)-plane determined by aspect ratio. In  
the first region, given by r < r,, a stable five-cell flow exists above the curve 5,. In 
the region I', < r < r,, we have a stable five-cell flow above the curve joining H, 
and I and in the small region between the curve joining HI and I and the locus of 5,. 
Finally for r > rH2, there is a stable five-cell flow above the curve 5,. 

In the region around I it was very difficult to obtain repeatable experimental 
results and thus the fine detail of the numerical work could not be resolved 
experimentally. I n  each of these regions there is no experimental evidence for a stable 
five-cell solution below the specified curve. These results indicate that the observable 
five-cell state for r < r, is different to that for r > r,. In particular we should expect 
the solution for r < 4 to be the new five-cell state and the solution for r > r, to be 
the old five-cell state. For the int,ermediate range of r it is not immediately obvious 
which state we should expect. In  figures 4 and 5 there is a comparison between cross- 
sectional photographs and streamline plots for a value of r less than r, (figure 4) and 
a value greater than r, (figure 5). In figure 4(a), the streamline plot obtained 
numerically from the new five-cell solution a t  r= 3.785, fl = 253, compares 
favourably with the photograph of the experimentally observed flow at the same 
parameter values (figure 4b). In figure 5 ( a ) ,  the streamline plot was obtained from 
the old five-cell solution at  r= 4.595, R = 217.8 and again there is a good 
comparison with the photograph of the experimentally observed flow a t  these 
parameter values (figure 5 b ) .  The main difference between the two five-cell states is 
the much smaller size of the second and third cells from the top, in figures 4 and 5 ,  
in the new state than in the old state. 
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FIGURE 4. Streamline plot of numerical solution (a)  and photograph ( b )  for = 0.6, r= 3.785, 
R = 253, of the five-cell flow. Contours of the stream function are plotted a t  intervals of 0.01 except 
for the small vortex in the corner where the interval is 0.0025. 



482 D .  K .  Anson, T .  Mullin and K .  A .  Cliffe 

~ ~~ 

(4 
FIQURE 5 ( a , b ) .  For caption see facing page. 
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(4 (4 (f) 

r, < r < r, r, < r < r, r<r, 
FIGURE 6. Changes in the bifurcation diagram for the old five-cell mode and the new five-cell mode, 
at  7 = 1 ,  as r is decreased from about 4.16 to 3.88. The stabilities are indicated by + + , stable; 
-- , + - and - + , unstable. Hopf bifurcation points are marked x . 

We now give an explanation of the above results with reference to the schematic 
diagrams in figure 6. The eigenvalues are indicated by + and - signs, where + + 
means no negative eigenvalues and - - indicates a pair of negative eigenvalues. 
Only + + gives rise to a stable solution. The sequence 6 ( a )  to 6 ( j )  is arranged in 
order of decreasing values of r, with the critical values referring to the singularities 
of figure 3. 

I n  figure 6(a ) ,  r > rHz, the only stable state lies on the old solution. The critical 
Reynolds number is determined by the limit point lo, which lies on the fold curve 
5,. At r = rH2, a Hopf bifurcation point appears on the stable branch of the old 
solution, destabilizing part of the solution as shown in figure 6 ( b ) .  The solution for 
rH2 > r > r, is given in figure 5 ( b ) .  At r = r,, a second Hopf bifurcation appears, 
this time on the doubly unstable branch of the new solution, thus stabilizing it as 
shown in figures 6(c), 6 ( d )  and 6 ( e ) .  In  theory, therefore, we might expect a stable 
flow to exist between the limit point IN and the Hopf point. In practice the range of 
R is so small that we do not observe it experimentally, instead the lower stability 
boundary of the stable flow is marked by the Hopf point on the old solution. At 
r = r, there is a transcritical bifurcation which leads to the appearance of two new 
limit points, 4 and 12, (see figure 6 c  and 6 d )  and a hysteresis loop. At r= r', the 
hysteresis loop straightens out and we are left with the solution in figure 6 ( e ) .  The 
old solution is now completely unstable while the stable branch of the new solution 
is destabilized over a small range of Reynolds number by the two Hopf bifurcation 
points. At r= r, these two points coalesce and the new solution has a completely 

FIGURE 5. Streamline plot of numerical solution (a )  and photograph ( b )  for 7 = 0.6, r= 4.595, 
R = 217.8 of the five-cell flow. Contours of the stream function are plotted at  intervals of 0.01 
except for the small vortex in the corner where the interval is 0.0025. 
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FIQURE 7.  Conjectured representation of the Hopf bifurcation points, and resulting periodic orbits, 
on the new five-cell solution for 4 < r< r,, with the stabilities indicated on the steady-state 
solution by + + , stable and - - , unstable; and on the periodic orbits by u, unstable. 
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2 3 4 5 6 7 8 
Aspect ratio, f 

FIQURE 8. Numerically calculated path of symmetry-breaking bifurcation points for the old five- 
cell mode (-) numerically calculated fold curve for the new five-cell mode (----), with radius 
ratio 0.6 and 7 = 0. 

stable branch. The lower stability boundary is marked by the limit point /, which 
lies on the fold curve 5,. We have not determined numerically the stability of the 
periodic orbits resulting from the two Hopf bifurcation points, but since no stable 
oscillatory flows were observed we assume that the orbits are unstable. This 
assumption leads to the conjectured bifurcation diagram shown in figure 7. 

It is now left to discuss the origins of the new solution with respect to the periodic 
model. When the limit point, given by 1, in figure 6, was traced back to T = 0, it  
remained as a limit point. This is contrary to what we might have expected, since all 
the previously known solutions bifurcate in some continuous manner from the trivial 
solution. Figure 8 represents the projection of the set of these limit points onto the 
(r, R)-plane at r = O? compared with the pitchfork bifurcation to  five-cell flow in the 
existing model. 

We computed the solution along both branches of the new five-cell flow, at T = 0, 
to a value of R = 1000. Both branches remain regular. An interesting point to note is 
that the solution on the stable branch mutates smoothly from the five-cell state to 
a three-cell state which is not connected to the previously recorded three-cell state. 
This unusual phenomenon does not occur a t  7 = 1.  A streamline plot of the stable, 
new five-cell solution, at R = 90, is shown in figure 9 ( a ) .  As the Reynolds number is 



A new solution in the Tuylor vortex problem 185 

FIGURE 9. Streamline plots of the solutions a t  T = 0, r = 4.0. Contours of the streamfunction are 
plotted at intervals of 0.01. ( a )  Stable, new flow a t  R = 90; ( b )  stable, new flow at R = 200; ( c )  
unstable, new flow at R = 90; (d )  standard five-cell flow at R = 90. 

increased the very weak cell collapses and the end cell is absorbed into the third cell 
up to produce a three-cell flow which is shown in figure 9(b ) .  The unstable, new five- 
cell solution, at R = 90, is shown in figure 9(c) and, for comparison, the old five-cell 
solution, at R = 90, is shown in figure 9 ( d ) .  

Finally, we find that there is no effect on the disconnected nature of the solution 
when the radius ratio is increased to 0.98. Therefore, we cannot attribute the new 
solution to the more complex nature of the wide-gap problem. 

4. Conclusions 
We have used the ideas of Schaeffer (1980) to compute the stability curve for the 

well-known anomalous five-cell flow solution of the realistic model. Numerical 
methods have been applied to compute a path of limit points using a continuation 
process. We find that there are three singularities on the path of limit points, namely 
a hysteresis point, a transcritical bifurcation point and a Takens-Bogdanov point. 
We deduce from these observations that another solution is interacting with the well- 
known solution. The ‘new’ solution has been computed numerically and the results 
show that it is another five-cell flow. 
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The new state has been observed experimentally, and comparisons between 
numerical and experimental results show that i t  is stable for aspect ratios below 
about 3.91. Over the same range of aspect ratios the well-known state, which we refer 
to as the ‘old’ solution, is not stable. However, for aspect ratios greater than 3.93 the 
old solution is stable and the new one is unstable. A comparison of the two states 
using cross-sectional photographs and streamline plots, shows that they are clearly 
different. 

We use a bifurcation theory approach to explain the exchange in stability. In 
particular, a path of Hopf bifurcation points, which gives rise to unstable time- 
dependent flow, has an important effect on the stability of the steady-state solution. 

The result is that we expect the steady-state solution to lose stability below different 
curves, depending on the value of aspect ratio. In fact there are three different 
regions. For r less than 3.91, where the new solution is stable, the flow loses stability 
a t  a limit point. For r in the range 3.91 to 4.14 the stable steady flow loses stability 
a t  a hopf bifurcation point. In this region we would expect to observe the old solution 
for f greater than 3.93, whilst for r less than 3.93 the nature of the solution is 
unclear. Finally, for l- greater than 4.14 the old solution is stable and the flow loses 
stability at a limit point. The loss of stability of the experimentally observed steady- 
state flow compares favourable with the stability curves obtained numerically using 
continuation methods. 

The new solution was studied numerically by following the path of limit points from 
7 = 1 to 7 = 0. At 7 = 0 the new five-cell state is quite different to the old one. While 
the old solution bifurcates from the trivial Couette flow branch at a critical value of 
R, the new five-cell state is completely disconnected and loses stability a t  a limit 
point. We used continuation techniques to  compute both branches of the solution up 
to a value of R = 1000 and found them to be regular. We, therefore, refer to this new 
five-cell state as a disconnected mode. 

Finally, we computed the solution a t  values of radius ratio up to 7 = 0.98 to 
determine whether we were observing a phenomenon restricted to the wide-gap 
problem. This proved not to be the case and we conclude that the new solution is 
disconnected over all parameter space. 
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